Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 610(7932): 519-525, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36261548

RESUMO

Genomic analyses of Neanderthals have previously provided insights into their population history and relationship to modern humans1-8, but the social organization of Neanderthal communities remains poorly understood. Here we present genetic data for 13 Neanderthals from two Middle Palaeolithic sites in the Altai Mountains of southern Siberia: 11 from Chagyrskaya Cave9,10 and 2 from Okladnikov Cave11-making this one of the largest genetic studies of a Neanderthal population to date. We used hybridization capture to obtain genome-wide nuclear data, as well as mitochondrial and Y-chromosome sequences. Some Chagyrskaya individuals were closely related, including a father-daughter pair and a pair of second-degree relatives, indicating that at least some of the individuals lived at the same time. Up to one-third of these individuals' genomes had long segments of homozygosity, suggesting that the Chagyrskaya Neanderthals were part of a small community. In addition, the Y-chromosome diversity is an order of magnitude lower than the mitochondrial diversity, a pattern that we found is best explained by female migration between communities. Thus, the genetic data presented here provide a detailed documentation of the social organization of an isolated Neanderthal community at the easternmost extent of their known range.


Assuntos
Homem de Neandertal , Animais , Feminino , Humanos , Cavernas , Genoma/genética , Hibridização Genética , Homem de Neandertal/genética , Sibéria , DNA Mitocondrial/genética , Cromossomo Y/genética , Masculino , Família , Homozigoto
2.
Science ; 372(6542)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33858989

RESUMO

Bones and teeth are important sources of Pleistocene hominin DNA, but are rarely recovered at archaeological sites. Mitochondrial DNA (mtDNA) has been retrieved from cave sediments but provides limited value for studying population relationships. We therefore developed methods for the enrichment and analysis of nuclear DNA from sediments and applied them to cave deposits in western Europe and southern Siberia dated to between 200,000 and 50,000 years ago. We detected a population replacement in northern Spain about 100,000 years ago, which was accompanied by a turnover of mtDNA. We also identified two radiation events in Neanderthal history during the early part of the Late Pleistocene. Our work lays the ground for studying the population history of ancient hominins from trace amounts of nuclear DNA in sediments.


Assuntos
Núcleo Celular/genética , DNA Mitocondrial/genética , Homem de Neandertal/classificação , Homem de Neandertal/genética , Animais , Cavernas/química , DNA Mitocondrial/análise , DNA Mitocondrial/isolamento & purificação , Sedimentos Geológicos/química , Filogenia , População/genética , Análise de Sequência de DNA , Sibéria , Espanha
3.
Proc Natl Acad Sci U S A ; 117(26): 15132-15136, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32546518

RESUMO

We sequenced the genome of a Neandertal from Chagyrskaya Cave in the Altai Mountains, Russia, to 27-fold genomic coverage. We show that this Neandertal was a female and that she was more related to Neandertals in western Eurasia [Prüfer et al., Science 358, 655-658 (2017); Hajdinjak et al., Nature 555, 652-656 (2018)] than to Neandertals who lived earlier in Denisova Cave [Prüfer et al., Nature 505, 43-49 (2014)], which is located about 100 km away. About 12.9% of the Chagyrskaya genome is spanned by homozygous regions that are between 2.5 and 10 centiMorgans (cM) long. This is consistent with the fact that Siberian Neandertals lived in relatively isolated populations of less than 60 individuals. In contrast, a Neandertal from Europe, a Denisovan from the Altai Mountains, and ancient modern humans seem to have lived in populations of larger sizes. The availability of three Neandertal genomes of high quality allows a view of genetic features that were unique to Neandertals and that are likely to have been at high frequency among them. We find that genes highly expressed in the striatum in the basal ganglia of the brain carry more amino-acid-changing substitutions than genes expressed elsewhere in the brain, suggesting that the striatum may have evolved unique functions in Neandertals.


Assuntos
Genoma , Homem de Neandertal/genética , Animais , Evolução Biológica , Feminino , Fósseis , Regulação da Expressão Gênica , Variação Genética , Humanos , Endogamia , Densidade Demográfica , Federação Russa
4.
Proc Natl Acad Sci U S A ; 116(31): 15610-15615, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31308224

RESUMO

The Forbes' Quarry and Devil's Tower partial crania from Gibraltar are among the first Neanderthal remains ever found. Here, we show that small amounts of ancient DNA are preserved in the petrous bones of the 2 individuals despite unfavorable climatic conditions. However, the endogenous Neanderthal DNA is present among an overwhelming excess of recent human DNA. Using improved DNA library construction methods that enrich for DNA fragments carrying deaminated cytosine residues, we were able to sequence 70 and 0.4 megabase pairs (Mbp) nuclear DNA of the Forbes' Quarry and Devil's Tower specimens, respectively, as well as large parts of the mitochondrial genome of the Forbes' Quarry individual. We confirm that the Forbes' Quarry individual was a female and the Devil's Tower individual a male. We also show that the Forbes' Quarry individual is genetically more similar to the ∼120,000-y-old Neanderthals from Scladina Cave in Belgium (Scladina I-4A) and Hohlenstein-Stadel Cave in Germany, as well as to a ∼60,000- to 70,000-y-old Neanderthal from Russia (Mezmaiskaya 1), than to a ∼49,000-y-old Neanderthal from El Sidrón (El Sidrón 1253) in northern Spain and other younger Neanderthals from Europe and western Asia. This suggests that the Forbes' Quarry fossil predates the latter Neanderthals. The preservation of archaic human DNA in the warm coastal climate of Gibraltar, close to the shores of Africa, raises hopes for the future recovery of archaic human DNA from regions in which climatic conditions are less than optimal for DNA preservation.


Assuntos
DNA Antigo , Homem de Neandertal/genética , Análise de Sequência com Séries de Oligonucleotídeos , Animais , Gibraltar , História Antiga , Humanos
5.
Nature ; 561(7721): 113-116, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30135579

RESUMO

Neanderthals and Denisovans are extinct groups of hominins that separated from each other more than 390,000 years ago1,2. Here we present the genome of 'Denisova 11', a bone fragment from Denisova Cave (Russia)3 and show that it comes from an individual who had a Neanderthal mother and a Denisovan father. The father, whose genome bears traces of Neanderthal ancestry, came from a population related to a later Denisovan found in the cave4-6. The mother came from a population more closely related to Neanderthals who lived later in Europe2,7 than to an earlier Neanderthal found in Denisova Cave8, suggesting that migrations of Neanderthals between eastern and western Eurasia occurred sometime after 120,000 years ago. The finding of a first-generation Neanderthal-Denisovan offspring among the small number of archaic specimens sequenced to date suggests that mixing between Late Pleistocene hominin groups was common when they met.


Assuntos
Hominidae/genética , Hibridização Genética/genética , Homem de Neandertal/genética , Alelos , Animais , Pai , Feminino , Fluxo Gênico/genética , Genoma , Genômica , História Antiga , Humanos , Masculino , Mães , Fatores de Tempo
6.
Nature ; 555(7698): 652-656, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29562232

RESUMO

Although it has previously been shown that Neanderthals contributed DNA to modern humans, not much is known about the genetic diversity of Neanderthals or the relationship between late Neanderthal populations at the time at which their last interactions with early modern humans occurred and before they eventually disappeared. Our ability to retrieve DNA from a larger number of Neanderthal individuals has been limited by poor preservation of endogenous DNA and contamination of Neanderthal skeletal remains by large amounts of microbial and present-day human DNA. Here we use hypochlorite treatment of as little as 9 mg of bone or tooth powder to generate between 1- and 2.7-fold genomic coverage of five Neanderthals who lived around 39,000 to 47,000 years ago (that is, late Neanderthals), thereby doubling the number of Neanderthals for which genome sequences are available. Genetic similarity among late Neanderthals is well predicted by their geographical location, and comparison to the genome of an older Neanderthal from the Caucasus indicates that a population turnover is likely to have occurred, either in the Caucasus or throughout Europe, towards the end of Neanderthal history. We find that the bulk of Neanderthal gene flow into early modern humans originated from one or more source populations that diverged from the Neanderthals that were studied here at least 70,000 years ago, but after they split from a previously sequenced Neanderthal from Siberia around 150,000 years ago. Although four of the Neanderthals studied here post-date the putative arrival of early modern humans into Europe, we do not detect any recent gene flow from early modern humans in their ancestry.


Assuntos
Genoma/genética , Homem de Neandertal/classificação , Homem de Neandertal/genética , Filogenia , África/etnologia , Animais , Osso e Ossos , DNA Antigo/análise , Europa (Continente)/etnologia , Feminino , Fluxo Gênico , Genética Populacional , Genômica , Humanos , Ácido Hipocloroso , Masculino , Sibéria/etnologia , Dente
7.
Science ; 358(6363): 655-658, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28982794

RESUMO

To date, the only Neandertal genome that has been sequenced to high quality is from an individual found in Southern Siberia. We sequenced the genome of a female Neandertal from ~50,000 years ago from Vindija Cave, Croatia, to ~30-fold genomic coverage. She carried 1.6 differences per 10,000 base pairs between the two copies of her genome, fewer than present-day humans, suggesting that Neandertal populations were of small size. Our analyses indicate that she was more closely related to the Neandertals that mixed with the ancestors of present-day humans living outside of sub-Saharan Africa than the previously sequenced Neandertal from Siberia, allowing 10 to 20% more Neandertal DNA to be identified in present-day humans, including variants involved in low-density lipoprotein cholesterol concentrations, schizophrenia, and other diseases.


Assuntos
Evolução Biológica , Homem de Neandertal/genética , Alelos , Animais , Cavernas , Croácia , DNA Antigo , Genoma , Humanos
8.
Bioinformatics ; 32(20): 3201-3203, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27354695

RESUMO

We present ABAEnrichment, an R package that tests for expression enrichment in specific brain regions at different developmental stages using expression information gathered from multiple regions of the adult and developing human brain, together with ontologically organized structural information about the brain, both provided by the Allen Brain Atlas. We validate ABAEnrichment by successfully recovering the origin of gene sets identified in specific brain cell-types and developmental stages. AVAILABILITY AND IMPLEMENTATION: ABAEnrichment was implemented as an R package and is available under GPL (≥ 2) from the Bioconductor website (http://bioconductor.org/packages/3.3/bioc/html/ABAEnrichment.html). CONTACTS: steffi_grote@eva.mpg.de, kelso@eva.mpg.de or michael_dannemann@eva.mpg.deSupplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Encéfalo , Expressão Gênica , Software , Adulto , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Humanos
9.
Science ; 352(6282): 235-9, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26989198

RESUMO

Although Neandertal sequences that persist in the genomes of modern humans have been identified in Eurasians, comparable studies in people whose ancestors hybridized with both Neandertals and Denisovans are lacking. We developed an approach to identify DNA inherited from multiple archaic hominin ancestors and applied it to whole-genome sequences from 1523 geographically diverse individuals, including 35 previously unknown Island Melanesian genomes. In aggregate, we recovered 1.34 gigabases and 303 megabases of the Neandertal and Denisovan genome, respectively. We use these maps of archaic sequences to show that Neandertal admixture occurred multiple times in different non-African populations, characterize genomic regions that are significantly depleted of archaic sequences, and identify signatures of adaptive introgression.


Assuntos
DNA/genética , Genoma Humano/genética , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Homem de Neandertal/genética , Animais , Variação Genética , Humanos , Melanesia , Análise de Sequência de DNA
10.
PLoS One ; 8(12): e81787, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24324723

RESUMO

For trees in tropical forests, competition for light is thought to be a central process that offers opportunities for niche differentiation through light gradient partitioning. In previous studies, a canopy index based on three-dimensional canopy census data has been shown to be a good predictor of species-specific demographic rates across the entire tree community on Barro Colorado Island, Panama, and has allowed quantifying between-species variation in light response. However, almost all other forest census plots lack data on the canopy structure. Hence, this study aims at assessing whether position-based neighborhood competition indices can replace information from canopy census data and produce similar estimates of the interspecific variation of light responses. We used inventory data from the census plot at Barro Colorado Island and calculated neighborhood competition indices with varying relative effects of the size and distance of neighboring trees. Among these indices, we selected the one that was most strongly correlated with the canopy index. We then compared outcomes of hierarchical Bayesian models for species-specific recruitment and growth rates including either the canopy index or the selected neighborhood competition index as predictor. Mean posterior estimates of light response parameters were highly correlated between models (r>0.85) and indicated that most species regenerate and grow better in higher light. Both light estimation approaches consistently found that the interspecific variation of light response was larger for recruitment than for growth rates. However, the classification of species into different groups of light response, e.g. weaker than linear (decelerating) vs. stronger than linear (accelerating) differed between approaches. These results imply that while the classification into light response groups might be biased when using neighborhood competition indices, they may be useful for determining species rankings and between-species variation of light response and therefore enable large comparative studies between different forest census plots.


Assuntos
Luz , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Árvores/crescimento & desenvolvimento , Clima Tropical , Modelos Biológicos , Panamá , Dinâmica Populacional , Especificidade da Espécie , Árvores/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...